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Image restoration using theQ-Ising spin glass
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We investigate static and dynamic properties of gray-scale image restoration by making use of theQ-Ising
spin glass model, whose ladder symmetry allows us to take in account the distance between two spins. We thus
give an explicit expression of the Hamming distance between the original and restored images as a function of
the hyperparameters in the mean field limit. Finally, numerical simulations for real-world pictures are carried
out to prove the efficiency of our model.
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I. INTRODUCTION

In the last decade, the problem of the image restora
~IR! has been successfully investigated by means of te
niques borrowed from the field of statistical mechani
Among them, it is certainly worth mentioning the maximu
posterior marginal ~MPM! and maximum a posteriori
~MAP! estimations. From the statistical mechanical point
view, each recovered image within the MPM estimation c
be regarded as the equilibrium state of ferromagnetic s
systems in the presence of random fields at finite temp
ture. In simple words, the reconstruction of a corrupted
age is achieved by balancing the strength of a linear fi
which carries the information of the degraded picture, an
ferromagnetic term that builds relatively large ‘‘one-colo
clusters~below the transition temperature!, thus suppressing
the isolated pixels thought to be noise. From this point
view, the MAP estimation consists in the minimization of t
same Hamiltonian at zero temperature~search for the ground
state!, with an appropriate scaling of the random field. T
advantage of the MPM estimation over the MAP one h
been pointed out by Marroquinet al. @1# and its performance
has been investigated by several authors@2,3#. In this direc-
tion, Nishimori and Wong@4#, by unifying IR problem and
error-correcting code theory under a single framework, fou
that the optimal recovering of an image is obtained at a fin
temperature~known asNishimori temperaturein the field of
statistical mechanics!. Their results, however, were restricte
to the usual binary spin models~Ising!, i.e., black or white
images in IR jargon, and many questions about the prope
of the gray-scale image restoration~GSIR! processes still
remain open. A first attempt to generalize@4# to gray-level
pictures has been carried out by the authors@5# by mapping
the set of the pixels ontoQ-state~chiral! Potts spins in the
presence of the random fields. In that case, the symmetr
the Potts Hamiltonian~hypertetrahedron! reduces the prob
lem to a two-state-like system, where only one bit turns ou
to be right, and all the others are equivalently wrong witho
any regard of the whole gray-level scale. Whereas this tu
out to be an efficient method in the presence of white no
~each spin is flipped to any of theQ values with equal prob-
ability!, things may be different from a transmission chan
affected by Gaussian noise~the spin-flip probability distribu-
1063-651X/2001/64~3!/036121~18!/$20.00 64 0361
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tion is a Gaussian!. We thus investigate the performanc
~both static and dynamic! of the gray-scaled image restora
tion using theQ-Ising model @7#, whose ladder symmetry
takes into account the distance between the spin values
will allow us to say, for instance, thatQ53 is better than
Q55 if the right pixel corresponds toQ52. The analytical
expressions are obtained in so-called mean field limit@6#,
where each spin interacts with all the others. The efficien
of our model is checked by Monte Carlo simulations a
iterative algorithm by using mean-field approximation. Th
paper is organized as follows. In Sec. II A, we introduce o
model system using the infinite range model and explain
general formulation of the MPM estimation. In this paper, w
focus our attention on the averaged case performance
stead of the performance for a specific choicef data. There-
fore, in Sec. II B, we define the average of the macrosco
physical quantities over the data distribution. In Sec. II C
give an analytical expression of the Hamming distance
static calculation in the mean-field limit. In Sec. II D w
derive the dynamical equations with respect to the mac
scopic quantities, namely, the magnetization and the H
ming distance in terms of microscopic master equation.
Sec. III, in order to test the usefulness of theQ-Ising model
for the GSIR, we carry out Monte Carlo simulations for rea
world pictures withQ58 gray-scale levels. In Sec. IV, w
show an iterative algorithm based on the mean-field appr
mation, whose convergence is much faster than that of
Monte Carlo simulations. The last section is left for summa
and discussion.

II. THE INFINITE RANGE Q-ISING SPIN GLASS MODEL

A. General formulation

A Q-gray-scale levels image is nothing but a set of pix
$j% on a grid, whose values can be coded at each node a
integer variablej iP$1,2, . . . ,Q%. Without loss of generality,
let our image be generated by the following prior distrib
tion:

Ps~$j%!5
1

Zs
expF2

bs

2 (
i j

~j i2j j !
2G ,

whereZs is the usual normalization constant that is given
©2001 The American Physical Society21-1
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Zs5Tr$j% expF2
bs

2 (
i j

~j i2j j !
2G .

In the spirit of statistical mechanics, we want to regard t
picture as a snapshot of a spin system described by
HamiltonianHs[(1/2)( i j (j i2j j )

2 at a specific temperatur
Ts[bs

21 . Sending our image through a noisy channel w
cause the flipping of some pixels to different values. For t
degrading process, we assume that each pixelj i changes its
state tot i independently. Then, the degraded pixelt i is given
by the following conditional probability:

P~t i uj i !5
1

A2pat

expF2
1

2at
2 ~t i2t0j i !

2G .

This means that after the transmission, the receiver obse
t i that was violated from scaled original imaget0j i with a
standard deviationat . This kind of damaging process is re
ferred to asGaussian channel~GC!. Due to the indepen-
dence of noisy process on each pixel, a sequence of orig
pixel $j% is corrupted by the GC as

P~$t%u$j%!5)
i

P~t i uj i !

5
1

~A2pat!
N

expF2
1

2at
2 (

i
~t i2t0j i !

2G .

In the context of Bayesian approach, the posterior distri
tion reads

P~$s%u$t%!

5
P~$t%u$s%!P~$s%!

Tr$s% P~$t%u$s%!P~$s%!

5

expF2h(
i

~s i2t i !
22~bd/2!(

i j
~s i2s j !

2G
Tr$s% expF2h(

i
~s i2t i !

22~bd/2!(
i j

~s i2s j !
2G

[
exp~2Heff!

Zd
, ~1!
03612
s
he

l
s

es

al

-

where we defined the effective HamiltonianHeff and the nor-
malization constantZd as

Heff[h(
i

~s i2t i !
21

bd

2 (
i j

~s i2s j !
2 ~2!

and

Zd[Tr$s% exp@2Heff#,

respectively. The parametersh and bd appearing in the
Hamiltonian Heff @Eq. ~2!# are referred to ashyperparam-
etersand we cannot mention about the true values of th
beforehand. This posterior distributionP($s%u$t%) is con-
structed in terms of a likelihoodP($t%u$s%) and a prior
probability P($s%) as we saw in Eq.~1!. P($t%u$s%) and
P($s%) are given by

P~$t%u$s%!5

expF2h(
i

~t i2s i !
2G

Tr$t% expF2h(
i

~t i2s i !
2G

and

P~$s%!5

expF2~bd/2!(
i j

~s i2s j !
2G

Tr$s% expF2~bd/2!(
i j

~s i2s j !
2G .

The prior probability reflects our assumption on the origin
image that the picture should be locally smooth. As brie
mentioned in the introduction, the MAP estimation consi
in maximizing the above posterior probabilityP($s%u$t%),
that is finding the ground state$s% of the effective Hamil-
tonianHeff and regarding it as an estimate of true pixels.

On the other hand, in the context of the MPM estimatio
we first consider the following marginal distribution:

P~s i u$s%!5 (
sÞs i

P~$s%u$t%!

and then we calculate the local magnetization that is gi
by
^s i&bd ,h[ (
s i51

Q

s i P~s i u$t%!5

Tr$s%s i (
sÞs i

expF2h(
i

~t i2s i !
22~bd/2!(

i j
~s i2s j !

2G
Tr$s% expF2h(

i
~t i2s i !

22~bd/2!(
i j

~s i2s j !
2G

5

Tr$s% s i expF2h(
i

~t i2s i !
22~bd/2!(

i j
~s i2s j !

2G
Tr$s% expF2h(

i
~t i2s i !

22~bd/2!(
i j

~s i2s j !
2G 5

Tr$s% s i exp@2Heff#

Tr$s% exp@2Heff#
. ~3!
1-2
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Using the above expectation value, we regard the estima
the original pixelj i as V(^s i&bd ,h), where functionV is

represented by a sum of step functionsQ(x) @Q(x)51 for
x>0 andQ(x)50 for x,0#;

V~^s i&bd ,h![(
k51

Q

kFQS ^s i&bd ,h2
2k21

2 D
2QS ^s i&bd ,h2

2k11

2 D G .
The natural quantity measuring the quality of our restorat
process, viz., the distance between the original and the
covered image, is the Hamming distance~square error!

DH~bd ,h![
1

2N (
i

@j i2V~^s i&!bd ,h#2,

whose value depends upon the hyperparameters,h,bd , ap-
pearing in the effective HamiltonianHeff . At this stage, it is
important to bear in mind that the MAP estimate is recove
as the limitbd→` ~keeping their ratio constantH[h/bd) in
Eq. ~3!. Encouraged by the results in@4# and @5#, we expect
that more data fed through the noisy channel improve
quality of the restored image, since the receiver will ha
more information about the original image. Especially,
spired by theory of error-correcting codes, in addition to
transmission of a sequence of pixels$j%[(j1 , . . . ,jN) we
also send the products of two original pixels, name
j ij j , (i , j 51, . . . ,N; iÞ j ). Of course, we can use anoth
kind of extra term like (j ij j )

2 or j ij jjk ; we use herej ij j as
a simplest form. In Sec. III, as another candidate, we test
efficiency of the extra information (j i2j j )

2, (i , j
51, . . . ,N; iÞ j ), namely, square distances of two pixels
Monte Carlo simulations.

For this simplest choice of extra information, each pro
uct j ij j is also corrupted independently by the followin
GC:

P~Ji j uj ij j !5
1

A2paJ

expF2
1

2aJ
2 ~Ji j 2J0j ij j !

2G , ~4!

namely, the degraded version of the productJi j deviated
from the scaled original dataJ0j ij j with width aJ . For this
degrading process, we modify a likelihoodP($t%u$s%) in
Eq. ~1! as
03612
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P~$t%,$J%u$s%!

5

expF2~bJ/2!(
i j

~Ji j 2s is j !
22h(

i
~t i2s i !

2G
ZL8

with

ZL8[Tr$t%,$J% expF2
bJ

2 (
i j

~Ji j 2s is j !
22h(

i
~t i2s i !

2G ,
where we introduced another hyperparameterbJ . Using the
same way as Eq.~1!, we rewrite the posterior probability a

P~$s%u$t%,$J%!5
exp@2Heff#

Tr$s% exp@2Heff#

with the following effective Hamiltonian

Heff5
bJ

2 (
i j

~Ji j 2s is j !
22h(

i
~t i2s i !

2

2
bd

2 (
i j

~s i2s j !
2. ~5!

B. Averaged case performance

Given the degraded version of data, namely,$t% and$J%,
arbitrary macroscopic physical quantityf ($s%,$t%,$J%) is
calculated in terms of the average over the posterior dis
bution P($s%u$t%,$J%) as

^ f ~$s%,$t%,$J%!&bd ,h[Tr$s% f ~$s%,$t%,$J%!P~$s%u$t%,$J%!

5
Tr$s% f ~$s%,$t%,$J%!e2Heff

Tr$s% e2Heff
. ~6!

In the practical applications, for a given data$t%,$J%, we
estimatei th pixel, for example, by means of the MPM es
mate as sgn(^s i&bd ,h). Obviously, this estimate depends o

the data$t%,$J%. However, our interest here is not the pe
formance for a specific data set$t%,$J% but the averaged
performance. Therefore, when the quant
^ f ($s%,$t%,$J%)&bd ,h depends on the observed data$t%,$J%,
we should average them out by the distribution
P~$t%,$J%u$j%!5

expF2
1

2aJ
2 (

i j
~Ji j 2J0j ij j !

22~1/2at
2!(

i
~t i2j i !

22
bs

2 (
i j

~j i2j j !
2G

Tr$t%,$J%,$j% expF2
1

2aJ
2 (

i j
~Ji j 2J0j ij j !

22~1/2at
2!(

i
~t i2j i !

22
bs

2 (
i j

~j i2j j !
2G
1-3
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to obtain the averaged performance of our method. Thus
averaged macroscopic quantity is given by

@^ f ~$s%,$t%,$J%!&bd ,h#$t%,$J%,$j%

[Tr$t%,$J%,$j%FTr$s% f ~$s%,$t%,$J%!e2Heff

Tr$s%e
2Heff

GP~$t%,$J%u$j%!.

~7!

Using this definition, the performance of image restoration
measured by the following averaged Hamming distance
tween the original imagej i and the restored one, that i
V(^s i&bd ,h) as

DH[Tr$t%,$J%,$j%
F Tr$s%~1/2N!(

i
@j i2V~^s i&bd ,h!#2e2Heff

Tr$s% e2Heff

G
3P~$t%,$J%u$j%!. ~8!

In the next two subsections, we investigate the performa
of image restoration in terms of this Hamming distanceDH .
We focus our analysis not only on the static properties
also the dynamic properties of image restoration.

C. Static properties

In this subsection, we consider the static properties
image restoration. First of all, we should investigate
properties of original image, that is to say, the properties
the ferromagneticQ-Ising model. However, it is quite hard t
calculate the partition function or the other physical quan
ties for our spin system defined on two-dimensional squ
lattice analytically. Therefore, in this paper, we investiga
the infinite range version of our model system and calcu
the macroscopic physical quantities analytically. Then,
infinite range version of the prior distribution leads to

Ps~$j%!5
1

Zs
expF2

bs

2N (
i j

~j i2j j !
2G ,

where we should notice that the argument of the exponen
should be divided byN in order to take a proper thermody
namic limit. For this rather artificial model, we easily obta
the magnetization at some temperatureTs(5bs

21) as fol-
lows:

m0[
1

N (
i

j i5
Trjj exp~2m0bsj2bsj

2!

Zs
.

We should keep in mind that for the infinite rangeQ-Ising
model, the properties of the macroscopic quantities of
system are completely determined bym0. In Fig. 1, we plot
the magnetizationm0 as a function of source temperatureTs
for Q53 andQ54. We see that for theQ53 case the three
statesm051, 2, and 3 are degenerated atTs50, while at
finite temperature the middle statem052 becomes globally
stable andm051,3 are degenerated locally stable. At hig
temperature regimeTs→`, each spin takes all the value
03612
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with the same probability 1/3 and thus the correspond
magnetization ism05(11213)/352. The transition be-
tween the ferromagnetic phase and the paramagnetic p
occurs atTc;1.0. In the same way as the case ofQ53, for
Q54, the four statesm051, 2, 3, and 4 are degenerated
Ts50, and the middle two statesm052 and 3 become glo-
bally stable for Ts.0 (m051,4 are degenerated locall
stable states!. The paramagnetic state is specified by t
magnetizationm05(1121314)/452.5 and the ferro-para
transition occurs atTc;1.78. For this original image, in or
der to investigate the average performance of the MPM
timation, we should calculateDH in terms of statistical me-
chanics of the spin system$s% with quenched disorde
$t%, $J%, and $j%. For this purpose, we calculate the ave
aged free energy of the system described byHeff @Eq. ~5!#
with assistance of the replica method;

@ ln Z#$t%,$J%,$j%5 lim
n→0

@Z n#$t%,$J%,$j%21

n

with

Z5Tr$s% exp~2bHeff!,

FIG. 1. The magnetization of the original image for the case
Q53 ~a! and Q54 ~b!. The solid lines correspond to globall
stable solutions.
1-4
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which consist in replacing the quenched average of a sin
system with an annealed average ofn replicated systems~let-
ting n→0 at the end!. Assuming a replica symmetric ansa
and by using the saddle point method, the order parame
are given by the following coupled equations:

m5@^s i
a&bd ,h#$t%,$J%,$j%5TrjQ~j!E

2`

`

Dx B~x,j!, ~9!

t5@j i^s i
a&bd ,h#$t%,$J%,$j%5Trj jQ~j!E

2`

`

Dx B~x,j!,

~10!

q5@^s i
a&bd ,h^s i

b&bd ,h#$t%,$J%,$t%

5Trj Q~j!E
2`

`

Dx@B~x,j!#2, ~11!

w5@^~s i
a!2&bd ,h#$t%,$J%,$j%5Trj Q~j!E

2`

`

Dx C~x,j!,

~12!

where we should remember that the brackets^•••&bd ,h and

@•••#$t%,$J%,$j% are defined by Eq.~6! and Eq. ~7!, respec-
tively. In the above expressions,Dx[(dx/A2p)e2x2/2 is the
usual Gaussian measure and we define

B~x,j![
Trs s exp@Us2Vs2#

Trs exp@Us2Vs2#
,

C~x,j![
Trs s2 exp@Us2Vs2#

Trs exp@Us2Vs2#
,

Q~j![
exp~2m0bsj2bsj

2!

Z~bs!
,

with

U/2[~t0h1bJJ0t !j1mbd1xA~ath!21~aJbJ!
2q,

V[h1bd1bJw.

Using the same method as the derivation of the order par
eters, the averaged Hamming distance Eq.~8! is calculated
and reads

DH~bd ,h,bJ!5Trj Q~j!E
2`

`

Dx@j2V„B~x,j!…#2.

It is straightforward to check that the above equations co
cide with those in@4# for the Q52 case. To keep thing
simple, we first assume that there is no glassy term in
decoding process, i.e.,bJ50. In Fig. 2, we plot the Ham-
ming distance as a function of the decoding temperature
Q53 andTs50.75. The minimum is reached atTd50.75.
The same forQ54 in Fig. 3. It can be shown numerically, a
least forQ53 andQ54, that, given the original image a
temperatureTs , just below the transition temperature, th
03612
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optimal decoding temperatureTd
(opt)5Ts . The same relation

turns out to be satisfied for black or white IR@4# ~which
corresponds toQ52!, differently from GSIR by the Potts
model@5#. In order to compare the performance of the MP
estimate with that of the MAP one, we first investigate t
scaled fieldH[h/bd dependence of the MAP estimate. Th
MAP estimate is obtained by controlling the temperature
Td→0 with keeping the scaled fieldH constant. Therefore
the Hamming distance for the MAP estimate should dep
on H. In Fig. 4~a!, we plot the Hamming distance of th
MAP estimate as a function ofH. In this figure, we setQ
53, Ts50.75, andat5t051.0. We see that the Hammin
distance takes its minimum atHopt5t0/2at

2bs50.375,
namely,

DH~Td50,H !>DH~Td50,t0/2at
2bs!.

This optimal value of the scaled fieldH5h/bd is obtained
when we set P($t%u$j%)5P($t%u$s%) and Ps($j%)
5Pd($s%), that is to say,bd5bs and h5t0/2at

2 . In Fig.
4~b!, we increase the temperatureTd keepingH5Hopt and
plot the Hamming distanceDH(Td ,Hopt) as a function of
Td . This figure shows thatDH(Td ,Hopt) takes its maximum
at Td5Ts50.75. Therefore, we conclude that the MPM e
timate achieves the lowest Hamming distance that canno
obtained by the MAP estimation. In Fig. 4~b!, we plot the
DH(Td ,H) for several values ofH. From this figure, we see
that as long as we chooseH so as to satisfyH>Hopt

5t0/2at
2bs , the minimum value of the Hamming distanc

does not change.
In the limit of Td→`, each pixel takess i51,2,3 with the

same probability 1/3, and the local magnetization leads
^s i&5(11213)/352 for all pixels i. As a result, the Ham-
ming distance in the high-temperature limit becomes

DH~Td→`!5

(
j51

3

~22j!2exp~2m0bsj2bsj
2!

2(
j51

3

exp~2m0bsj2bsj
2!

;0.1726.

This asymptotic behavior is checked in Fig. 4~b!. We now
switch on the product interaction, that is,bJÞ0 settingTd
andH at their optimal values. As clearly shown in Fig. 5, th
performance of the restoration is dramatically improved.
this figure, the pointbJ50 corresponds to the minimum o
the Hamming distance in Fig. 2.

D. Dynamics

An important and interesting problem is to determine t
basin of attraction of the Hamming distanceDH(t). In fact,
because of the presence of locally stable states, the final
of the restoration process is strongly dependent upon
initial condition of the dynamics. In addition, as the numb
of locally stable states increases with the number of the fi
gray-scale levels, it becomes crucial to choose the ini
state appropriately. However, as it is well known, it is dif
cult to treat the dynamics of spin system explicitly in fini
dimension, especially, dynamics in two dimension that is
1-5
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FIG. 2. The Hamming distances withou
glassy term (bJ50) for the case ofQ53. ~d! is
obtained by expanding~a! around its minimum.
The magnetizationm and corresponding free en
ergy2 f RS are plotted in~b! and~c!, respectively.
Here, the dotted lines and the solid lines are
cally stable states and globally stable states,
spectively.
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case of image restoration. In the previous section, we in
duced the infinite range model and solved it analytica
Using this model, we derived the properties of image res
ration and as we see in the next section, the results do
contradict qualitatively with the properties in two dimensio
With this fact in mind, we also use the infinite range mod
to investigate the dynamical properties of image restorat
In the equilibrium limit t→`, without glassy term, namely
bJ50, the properties of image restoration in the infin
range model are completely written by magnetizationm.
Therefore, we assume that the dynamics of image restora
is also expressed by the time evolution of the magnetiza
m(t). Therefore, we derive the differential equations w
respect to the macroscopic variables, namely,m(t) and
DH(t), from the microscopic master equation. For the sa
of simplicity, we restrict ourselves to the case without t
glassy term. The master equation of our system leads to

dpt~$s%!

dt
5 (

k51

N

(
sk851

Q

@w~Fk$s%!pt~Fk$s%!

2w~$s%!pt~$s%!#
03612
-
.
-
ot

.
l
n.

on
n

e

with the following transition rate:

w~$s%![w~sk→sk8!

5
exp@2~h1bd!sk8

2
12~mbd1htk!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1htk!sk8#

and w(Fk$s%)[w(sk→sk8), where we defined $s%
[(s1 , . . . ,sk , . . . ,sN) and single pixel changing operato
Fk that works asFk$s%5$s%8[(s1 , . . . ,sk8 , . . . ,sN).

By introducing the probability distribution of the magne
tization m, viz.,

Pt~m![(
s

pt~$s%!d@m2m~$s%!#

and after some algebra we obtain the following different
equation analytically:
1-6
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FIG. 3. The Hamming distances withou
glassy term (bJ50) for the case ofQ54. ~d! is
obtained by expanding~a! around its minimum.
The magnetizationm and corresponding free en
ergy2 f RS are plotted in~b! and~c!, respectively.
te
ce
th

s

lu

ing

en

he
to

n
on-
ge

an
the
dm

dt
52m1 (

j51

Q

Q~j!E
2`

`

Dx B~x,j!ubJ50 .

The derivation of the above differential equation is repor
in Appendix A. The time evolution of the Hamming distan
DH(t) is obtained by substituting the time dependence of
magnetizationm(t) into DH(m). In Fig. 6, we plot the time
evolutions of theQ53 Hamming distance forTd5Ts ~a!
andTdÞTs ~b!. From these figures, we see that if we choo
the hyperparameterTd so as to satisfy the relationshipTd
5Ts , the Hamming distance converges to its optimal va
for any initial condition. On the other hand, forTdÞTs ,
there exists a threshold of the initial value of the Hamm
distanceDH

(c) beyond which the flowDH(t) does not con-
verge to its optimal value. As the dynamical equation~with
respect tom) is exactly the same as the time depend
Ginsburg-Landau ~TDGL! equation, that is, dm/dt5
2] f RS/]m, where RS is replica symmetric, the nature of t
dynamics is intuitively understood as a steepest descent
local minimum of the free energy. In fact, from Figs. 2~a!–
03612
d

e

e

e

t

a

2~c!, we see that forTd,0.35, there exist locally stable
states. Therefore if we fail to choose the initial conditio
appropriately, the Hamming distance converges to the n
optimal values. For practical situations, the corrupted ima
corresponds to our initial state. For the caseTdÞTs , we
calculate the Hamming distanceDH

(1) between the original
image and the noised one, which reads

DH
(1)[

1

2N (
i

~t i2j i !
2

5

(
j51

Q

@at
21~t0

221!j2#exp~2m0bsj2bsj
2!

2Z~bs!
.

In particular, forat5t051.0, this leads toDH
(1)50.5. From

Fig. 5~b!, we see that if we choose the corrupted image as
initial state, we destroy the observed corrupted image and
result is even worse.
1-7
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The asymptotic expressions of the magnetization and
Hamming distance in the limit oft→` lead to

m5m* 1@m~ t50!2m* #e2t/t0,

DH5DH~m* !1D̃He2t/t0,

where m* is a solution of the saddle point equatio
~9!–~12! with bJ50 in the previous subsection. The rela
ation timet0 is given as

1

t0
5112bdE

2`

`

DxQ~j!@s̄22~ s̄ !2#

with

FIG. 4. The Hamming distanceDH of the MAP estimate for the
case ofQ53,Ts50.75,t05at51.0 ~a!. DH is plotted as a function
of the scaled fieldH5h/bd . We see that the minimum ofDH

appeared atH5Hopt5t0/2at
2bs50.375. The Hamming distance o

the MPM estimate is plotted in~b! as a function of the temperatur
Td for several values ofH. The figure shows that the minimum o
the MPM estimate withH5Hopt is lower than that of the MAP
estimate withH5Hopt .
03612
e

~••• !

[

(
s51

Q

~••• !exp@2~m* bd1athx1t0hj!s2~h1bd!s2#

(
s51

Q

exp@2~m* bd1athx1t0hj!s2~h1bd!s2#

,

and D̃H reads

D̃H[4bd@m~ t50!2m* #E
2`

`

Dx@j2V~s̄!#

3 (
k51

Q

kFdS s̄2
2k21

2 D2dS s̄2
2k11

2 D G
3@s̄22~ s̄ !2#.

We plot the inverse relaxation time 1/t0 as a function ofTd
for the case ofQ53,Ts50.75,at5t051.0 in Fig. 7. In this
figure, we also plot the inverse relaxation time for seve
values of the scaled fieldH. We see that the inverse relax
ation time 1/t0 takes its minimum at a finite temperatureTd .
However, the inverse relaxation time 1/t0 never reaches zero
and the relaxation to the equilibrium state is exponential
all Td regions.

III. MONTE CARLO SIMULATIONS

Thus far, we have worked under the assumption that
the pixels lay on an infinite-dimensional grid, an approxim
tion that enabled us to derive exact analytical formulas.
order to test the efficiency of theQ-Ising model on the more
realistic case of a two-dimensional picture, in this secti
we carry out Monte Carlo simulations at finite temperatu

FIG. 5. The Hamming distanceDH as a function of the strength
of the glassy termbJ for several values ofJ0. We setaJ51.0. The
point bJ50 corresponds to the minimum of the Hamming distan
in Fig. 2.
1-8



to
l

ou
2

e

a
im
na

ct

tio
er
n
c

lot

a
w
ng
in

u-
ed

IMAGE RESTORATION USING THEQ-ISING SPIN GLASS PHYSICAL REVIEW E64 036121
on a real-world image withQ58 gray-scale level@Fig. 9~a!#
corrupted by a Gaussian noise withat51.2 @Fig. 9~b!#. Here
the interaction in effective Hamiltonian is now restricted
the nearest neighbors spins on two-dimensional square
tice. As before, we first study the Hamming distance with
the glassy term. The resulting curves averaged over
Monte Carlo runs are shown in Fig. 8~a! for three different
values of the ratioH5h/bd . The plots reflect indeed th
mean-field behavior of Figs. 2~d! and 3~b!. The correspond-
ing restored picture at optimal values is shown in Fig. 9~c!. It
is evident that the ferromagnetic term succeeds in elimin
ing the noised pixel, i.e., isolated ones, but at the same t
it also smoothens out the small true details of the origi
picture. For this reason, by keeping fixedTd

(opt) andHopt, we
switch on the glassy term, namely,bJÞ0. In Eq.~4! for the
analysis of the infinite range model, we sent produ
j ij j , (i , j 51, . . . ,N; iÞ j ) of two pixels in original image
through the channel. In this case, we send extra informa
about the correlation of arbitrary two pixels to receiv
However, we may send another kind of extra informatio
For example, it may be useful to send the square distan

FIG. 6. The time evolutions of the Hamming distance are p
ted in ~a! Td5Ts50.75 and~b! Td50.2ÞTs50.75. We see that for
the case ofTd5Ts , the Hamming distance converges to its optim
value for any initial state of the dynamics. On the other hand, if
set Td50.2ÞTs , the Hamming distance converges to the wro
state that is higher than the Hamming distance between the orig
image and the corrupted one, that is,DH

(1)50.5.
03612
at-
t
0

t-
e
l

s

n
.
.
es

-

l
e

al

FIG. 7. The inverse relaxation time 1/t0 as a function ofTd for
the case ofQ53,Ts50.75,at5t051.0.

FIG. 8. The Hamming distance calculated by Monte Carlo sim
lation for 1003100 standard picture ‘‘house.’’ The curves averag
over 20 MCS runs are shown in@bJ50 ~a! andbJÞ0 ~b!#.
1-9
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between two pixels, namely, (j i2j j )
2, (i , j 51, . . . ,N; i

Þ j ) through the following noisy channel:

P„Ji j u~j i2j j !
2
…5

1

A2pat

expF2
$Ji j 2J0~j i2j j !

2%2

2aJ
2 G .

For this degrading process, we use the likelihood

P~$J%u$s%!5
1

~A2p!N
expF2

bJ

2 (
i j

$Ji j 2~s i2s j !
2%2G

to construct the posterior distribution. Here we setaJ5J0
51.0 and carry out Monte Carlo simulations to check t
efficiency of the above extra information. The curves in F
8~b!, for 20 Monte Carlo runs, show an improvement of t
recovered image. The restored image at the minimumbJ

(opt)

is on the lower right corner of Fig. 9. It is evident that th
extra term preserves many of the small details of the orig
image, for example, the white edge of the roof, which w
blurred for the case ofbJ50.

IV. ITERATIVE ALGORITHM „MEAN FIELD …

The restoration by means of Monte Carlo methods is
result of a statistical process that might take long time e
for powerful computers as the size of the picture increas
Therefore we apply mean-field iterative algorithm to o
model. Mean-field iterative algorithm was already applied
image restoration problem by several authors in the con
of the MAP estimation@3# ~the Gaussian model!, @8# ~the

FIG. 9. The original picture~a! ~‘‘house,’’ size 1003100), the
corrupted picture byat51.2 Gaussian noise~b!, the restored pic-
tures atbJ50 ~c! andbJÞ0 ~d! are displayed.
03612
e
.

al
s

e
n
s.
r
o
xt

Ising model using pair approximation!, @9# ~the Potts model
using cluster zero temperature process! in the context of the
MAP estimation. Therefore, these methods are referred t
mean-field annealing. In this paper, however, we use th
mean-field iterative algorithm to obtain the MPM estima
For this purpose, we set temperatureT51 during the itera-
tions @see Eq.~B6! in Appendix B#. Recently, mean-field
iterative algorithm in the context of the MPM estimation w
applied to error-correcting codes problems@10# and its per-
formance was investigated form information geometri
point of view @11#.

Using the mean-field approximation with periodic boun
ary conditions for two dimensional square lattice of sizeL1
3L2, the recursion relations with respect to the local ma
netization at a site (i , j ), namely,mi j lead to

mi j
(t11)5

Trs sev i j
(t)(s)

Trsev i j
(t)(s)

, ~13!

v i j
(t)~s!5$J@mi , j 11

(t) 1mi , j 21
(t) 1mi 11,j

(t) 1mi 21,j
(t) #12ht i j %s

2~2J1h!s2, ~14!

mi , j 1L2
5mi j , mi 1L1 , j5mi j , ~15!

where Trs(•••) means the sum with respect to the gray-sc
levels, namely,s51,2, . . . ,Q. The details of the derivation
by using a variational principle are reported in Appendix

Then, we obtain the estimate of the pixelj i j , namely,
V(mi j ) by solving the above nonlinear maps until approp
ate error tolerance is satisfied. In order to investigate its p
formance, we introduce the following three measures:

DH[
1

2L1L2
(
i 51

L1

(
j 51

L2

@V~mi j !2j i j #
2,

DH
(1)[

1

2L1L2
(
i 51

L1

(
j 51

L2

@V~mi j !2t i j #
2,

DH
(2)[

1

2L1L2
(
i 51

L1

(
j 51

L2

@t i j 2j i j #
2,

whereDH , DH
(1) , andDH

(2) are distances between the orig
nal imagej i j and the restored oneV(mi j ), the corrupted
imaget i j and the restored one, and the corrupted image
the original one, respectively. We chooseQ58, L15L2
5128, andh51.0 and solve the recursion relations~13!,
~14!, and~15! until the error

« (t)[
1

2L1L2
(
i 51

L1

(
j 51

L2

umi j
(t11)2mi j

(t)u

becomes smaller than 1025. We list the results in Fig. 8
~‘‘girl’’ ! and Fig. 9~‘‘chair’’ !. The original images are de
graded by the Gaussian noise with a standard deviationat
52.2. This standard deviation gives the Hamming dista
between the original image and the degraded oneDH

(2)
1-10
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FIG. 10. The results of the it-
erative algorithm are displayed
The original ‘‘girl’’ picture of
1283128 ~a!, the degraded pic-
ture ~b!, the restored pictures with
J50.2 ~c!, J51.8 ~d!, and J
52.5 ~e! are shown.
re
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we
;0.205. Obviously, the picture ‘‘chair’’ contains many mo
edges than the picture ‘‘girl.’’ Therefore, one of our aims
this demonstration is to check to what extent our model
tects the edge parts in the real-world picture. In Fig. 10,
plot the Hamming distancesDH @~a!# and DH

(1) @~b!#. We
choose the degraded image as an initial set of the pixels
investigated theJ dependence of the Hamming distance. W
see that the performance of the algorithm for the ‘‘girl’’ pi
ture is much better than that of the ‘‘chair’’ picture. This
because the smoothness term in the effective Hamilton
03612
-
e

nd

n

@Eq. ~2!# is quadratic and it is hard to detect the edges in
‘‘chair’’ picture. For both pictures, the optimal performanc
is achieved around the parameterTd[1/J51/1.8;0.56.
This value is not so different from the parameter that w
obtained in Monte Carlo simulations@see Fig. 6~a!#. Of
course, from a practical point of view, it is possible to st
the Monte Carlo simulation and not to wait for the conve
gence to attain the equilibrium state precisely. Then, we m
regard the snapshot as the restored image if the perform
is not so bad. However, in the mean-field approximation
.

FIG. 11. The results of the it-

erative algorithm are displayed
The original ‘‘chair’’ picture of
1283128 ~a!, the degraded pic-
ture ~b!, the restored pictures with
J50.2 ~c!, J51.8 ~d!, and J
52.5 ~e! are shown.
1-11
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FIG. 12. The results of the it-
erative algorithm are displayed
The original ‘‘house’’ picture of
1283128 ~a!, the degraded pic-
ture ~b!, the restored pictures with
J50.2 ~c!, J51.8 ~d!, and J
52.5 ~e! are shown.
ra

m
it

am
m
fo
e

en
ce
o

fa
ui
on
c-
th
nd
he
th
t
ic
w
t

he

-
na
ha

is

and

and
constructed here, the convergence of the iteration is gua
teed~Figs. 11–13!.

V. SUMMARY AND DISCUSSION

In this paper we investigated the efficiency of theQ-Ising
model for image restoration problem, when the original i
age is affected by Gaussian noise. By introducing the infin
range model, we gave an analytical expression for the H
ming distance, which is shown to reach its minimum at so
finite temperature. We found that the optimal temperature
the GSIR using theQ-Ising model coincides with the sourc
temperature in contrast to the chiral Potts case@5#. We also
found that as in the Ising and Potts spin cases, the pres
of a parity-check-like term greatly increases the performan
of the GSIR process. Although for practical restorations
images, one would not like to smoothen out two points
away, the mean-field results provide a remarkable eye-g
for a short-range version of the effective Hamiltonian as c
firmed by Monte Carlo simulation on two-dimensional pi
tures. From a dynamical point of view, we also obtained
time evolution of the Hamming distance analytically a
found the critical initial Hamming distance beyond which t
flow does not converge to its optimal value. We show
dynamical equation we obtained is exactly the same as
TDGL equation. Therefore, the destination of the dynam
is one of the locally stable states of the free energy, and if
fail to select the initial condition, the dynamics converges
the local minimum that does not give the minimum of t
Hamming distance.

Recently, Skantzos and Coolen@12#, reported the synchro
nous dynamics of one-dimensional and infinite-dimensio
random field Ising models. They found that the dynamics
much more rich behavior than the sequential~Glauber! dy-
namics. Therefore, for our present model system, there
03612
n-

-
e
-
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ce

f
r
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e
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l
s

a

FIG. 13. The Hamming distance between the original image
the restored oneDH as a function ofJ @~a!# obtained by the iterative
algorithm. The Hamming distance between the restored image
the degraded oneDH

(1) is shown in~b!.
1-12
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possibility that if we consider the synchronous dynamics
stead of the sequential one, the behavior of the dynam
may be different from the results we obtained here.

Using the mean-field approximation, we also construc
the iterative algorithm that converges faster than the Mo
Carlo simulation. We derived it from a variational princip
of the free energy and demonstrate it for two types of
real-world pictures. From those results, we concluded
we need some extra term that would detect the edges if
picture has a lot of edges. We suppose that the glassy
we introduced in the infinite range model may play this ro
This will be achieved by means of the TAP-like mean-fie
approximation@10#.
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APPENDIX A: DERIVATION OF THE FLOW
OF MAGNETIZATION

In this appendix, we derive the differential equation w
respect to macroscopic order parameterm from microscopic
master equation for the infinite range version of theQ-Ising
model. For simplicity, we consider the case of no-par
check termbJ50. For the Q-Ising model, the effective
Hamiltonian is given as

Heff5
bd

2N (
i j

~s i2s j !
21h(

i
~s i2t i !

2[H~$s%!.

Therefore, the energy difference due to the local spin cha
sk→sk8 , namely, DE[H(Fk$s%)2H($s%) is calculated
in terms of the above HamiltoniansH($s%) andH(Fk$s%)
as follows:
03612
-
cs

d
te

e
at
he
rm
.

i
l
-

of

-
,

ge

DE5~h1bd!~sk8
2

2sk
2!22bdm~sk82sk!

22h~sk82sk!tk ,

where we defined single pixel changing operatorFk as
FkF($s%)5F(s1 , . . . ,sk8 , . . . ,sN) for arbitrary function
F($s%) and used the expression of the magnetization

m5
1

N (
j

s j .

Then, the transition ratew(sk→sk8) is given by

w~$s%![w~sk→sk8!5
e2DE

(
sk851

Q

e2DE

5
exp@2~h1bd!sk8

2
12~mbd1htk!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1htk!sk8#

.

and w(Fk$s%)[w(sk8→sk). For this transition rate, the
master equation leads to

d

dt
pt~$s%!5 (

k51

N

(
sk851

Q

@w~Fk$s%!pt~Fk$s%!

2w~$s%!pt~$s%!#.

Here we introduce the macroscopic probability

Pt~m![(
$s%

pt~$s%!d@m2m~$s%!#,

and consider the derivative ofPt(m) with respect tot, that is,
d

dt
Pt~m!5(

$s%

dpt~$s%!

dt
d@m2m~$s%!#

5(
$s%

H (
k51

N

(
sk851

Q

@w~Fk$s%!pt~Fk$s%!2w~$s%!pt~$s%!#J d@m2m~$s%!#

5(
$s%

(
k51

N

(
sk851

Q

w~$s%!pt~$s%!H dFm2m~$s%!1
1

N
~sk2sk8!G2d@m2m~$s%!#J

5
]

]m H(
$s%

(
k51

N

(
sk851

Q

w~$s%!pt~$s%!d@m2m~$s%!#
1

N
~sk2sk8!J
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5
]

]mH (
$s%

pt~$s%!(
k51

N

(
sk851

Q F exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#
G 1

N
~sk2sk8!d@m2m~$s%!#J

5
]

]m (
$s%

pt~$s%!(
k51

N H (
sk851

Q
sk

N F exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#
G

2 (
sk851

Q
sk8
N F exp@2~h1bd!sk8

2
12~mbd1tkh!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#
G J d@m2m~$s%!#

5
]

]m (
$s%

pt~$s%!5 1

NF (
k51

N

sk2 (
k51

N (
sk851

Q

sk8 exp@~2h1bd!sk8
2

12~mbd1tkh!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#
G 6 d@m2m~$s%!#, ~A1!

where we expanded the right-hand side of the above equation~A1! with respect to the quantity of order 1/N. Here we should
notice that

1

N (
k51

N (
sk851

Q

sk8exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#

(
sk851

Q

exp@2~h1bd!sk8
2

12~mbd1tkh!sk8#

5

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

DxF (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G ~A2!

should hold due to the self-averaging properties in the thermo-dynamical limitN→`. Substituting this expression into Eq
~A1!, we obtain

d

dt
Pt~m!5

]

]m
m(

$s%
pt~$s%!d@m2m~$s%!#2

]

]m (
$s%

pt~$s%!d@m

2m~$s%!#

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

DxF (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G

5
]

]m
mPt~m!2

]

]m
Pt~m!

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

DxF (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G

5
]

]m 5 Pt~m!S m2

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

DxF (
s51

Q

sexp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G D 6 .

~A3!
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Multiplying m and substitutingPt(m)5d@m2m(t)# to the left-hand side of the above Eq.~A3! and calculating integral with
respect tom, we obtain

E
2`

`

mdm
d

dt
d@m2m~ t !#5

d

dtE2`

`

m dmd@m2m~ t !#5
dm

dt
. ~A4!

Using the same way as the left-hand side of the Eq.~A3!, the right-hand side of Eq.~A3! leads to

E
2`

`

mdm
]

]m 5 d@m2m~ t !#S m2

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

Dx

3F (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G D 6

52E
2`

`

dmd@m2m~ t !#5 m2

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!

3E
2`

`

DxF (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G 6

52m1

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

DxF (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G . ~A5!

From Eqs.~A4! and ~A5!, we obtain the final form of the dynamical equation with respect to magnetizationm as

dm

dt
52m1

(
j51

Q

exp~2m0bsj2bsj
2!

Z~bs!
E

2`

`

DxF (
s51

Q

s exp@2~h1bd!s212~mbd1hatx1ht0j!s#

(
s51

Q

exp@2~h1bd!s212~mbd1hatx1ht0j!s#
G . ~A6!
e
ce

on
-

e-
an-
t

We easily see that the above equation is exactly the sam
the TDGL equation that is derived from the steepest des
of the replica symmetric free energy, that is,2] f RS/]m
5dm/dt. We should also notice that in the limit oft→` and
dm/dt50, Eq.~A6! corresponds to the saddle point equati
with respect tom, which was calculated by equilibrium sta
tistical mechanics in Sec. II A.
03612
as
nt

APPENDIX B: VARIATIONAL PRINCIPLE
FOR THE Q-ISING MODEL

In Sec. VI, we introduced the recursion relations that d
termine the estimate of the original image in terms of me
field approximation@8,9#. In this appendix, we show tha
these recursion relations, Eqs.~13!, ~14!, and ~15!, can be
derived from a variational principle.
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We consider the following optimization problem:

minr$E~r!2TS~r!%,

E~r![(
$s%

H~$s%!r~$s%!,

S~r![2(
$s%

r~$s%!ln r~$s%!,

where HamiltonianH is defined on the two-dimensiona
square lattice of sizeL13L2 (L15L25N) as

H~$s%!5
J

2 (
i j

$~s i j 2s i , j 11!21~s i j 2s i , j 11!21~s i j

2s i 11,j !
21~s i j 2s i 21,j !

2%1h(
i j

~t i j 2s i j !
2,

and E and S correspond to the energy and entropy of t
system, respectively. Then, we use the mean-field appr
mation, that is,

r~$s%!.)
i j

r i j ~s i j !.

We should notice that for each pixel (i , j ), the following
normalization condition should hold:

(
s i j 51

Q

r i j ~s i j !51. ~B1!

Using the Lagrange multiplierl i j , we take into account the
above normalization condition with respect to the margi
distribution, and maximize the following functional:

F[E~$s%!2TS~$s%!1(
i j

l i j S (
s i j 51

Q

r i j ~s i j !21D .

~B2!

The energyE and the entropyS of the system can be writte
explicitly as

E5(
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!r12~s12!•••

3r i j ~s i j !•••rkl~skl!•••rN21N~sN21N!,
03612
i-

l

S52(
s12

(
s13

•••(
s i j

•••(
skl

••• (
sN21N

)
i j

r i j ~s i j !

3(
i j

ln r i j ~s i j !.

The derivative of the third term of Eq.~B2! with respect to
r i j (s i j ) leads to(s i j 51

Q l i j , therefore, we have (]F/]r i j )

50 as

]F
]r i j ~s i j !

5 (
s i j 51

Q H(
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!

3r12~s12!•••rkl~skl!•••rN21N~sN21N!

1T ln r i j ~s i j !1T

1T (
klÞ i j

(
skl51

Q

rkl~skl!ln rkl~skl!1l i j J
50.

This leads to

r i j ~s i j !5A expF2
1

T (
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!

3r12~s12!•••rkl~skl!•••rN21N~sN21N!G . ~B3!

Using the normalization condition~B1!, we obtain the factor

A[expS 2
l i j

T
212 (

klÞ i j
(

skl51

Q

rkl~skl!ln rkl~skl!D
as

A5S (
s i j 51

Q

expF2
1

T (
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!

3r12~s12!•••rkl~skl!•••rN21N~sN21N!G D 21

. ~B4!

From Eqs.~B3! and ~B4!, the marginal distributionr i j (s i j )
reads
r i j ~s i j !5

expF2
1

T (
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!r12~s12!•••rkl~skl!•••rN21N~sN21N!G
(

s i j 51

Q

expF2
1

T (
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!r12~s12!•••rkl~skl!•••rN21N~sN21N!G .

In order to calculate the sum(s12
•••(sNN21

(•••), we rewrite the HamiltonianH($s%) as
1-16
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H~$s%!52J~s i , j 111s i , j 211s i 11,j1s i 21,j !s i j 22ht i j s i j 1~2J1h!~s i j !
22J (

klÞ i j
~sk,l 111sk,l 211sk11,l1sk21,l !skl

1~2J1h! (
klÞ i j

~skl!
21h(

i j
~t i j !

222h (
klÞ i j

tklskl ,

and using the relations between the local magnetization and the marginal distribution, namely,mi , j 11

5(s i , j 1151
Q s i , j 11r(s i , j 11), etc., we obtain

2
1

T (
s12

•••(
s i j

•••(
skl

••• (
sN21N

H~$s%!r12~s12!•••rkl~skl!•••rN21N~sN21N!

5
J

T
~mi , j 111mi , j 211mi 11,j1mi 21,j !s i j 1

2h

T
t i j s i j 2

~2J1h!

T
~s i j !

2

2
1

T (
$s%PI 8

H~$s%!r12~s12!•••rkl~skl!•••rN21N~sN21N!, ~B5!

whereI 8 stands for a set of the sites except for (i , j ).
Using Eq.~B5!, we rewriter i j (s i j ) as

r i j ~s i j !5

expH 1

T
@J~mi , j 111mi , j 211mi 11,j1mi 21,j !12ht i j #s i j 2

~2J1h!

T
~s i j !

2J
(

s i j 51

Q

expH 1

T
@J~mi , j 111mi , j 211mi 11,j1mi 21,j !12ht i j #s i j 2

~2J1h!

T
~s i j !

2J ,

where the factors

expF2
1

T (
$s%PI 8

H~$s%!r12~s12!•••rkl~skl!•••rN21N~sN21N!G
appearing in both numerator and denominator of ther i j (s i j ) were canceled. As the results, we obtainmi j as follows.

mi j 5 (
s i j 51

Q

s i j r i j ~s i j !5

(
s i j 51

Q

s i j expH 1

T
@J~mi , j 111mi , j 211mi 11,j1mi 21,j !12ht i j #s i j 2

~2J1h!

T
~s i j !

2J
(

s i j 51

Q

expH 1

T
@J~mi , j 111mi , j 211mi 11,j1mi 21,j !12ht i j #s i j 2

~2J1h!

T
~s i j !

2J . ~B6!
th
If we set T51, we can obtain the recursion relations wi
respect to the local magnetizationmi j under the periodic
boundary condition as

mi j
(t11)5

(
s51

Q

s ev i j
(t)(s)

(
s51

Q

ev i j
(t)(s)

,

03612
v i j
(t)~s!5$J@mi , j 11

(t) 1mi , j 21
(t) 1mi 11,j

(t) 1mi 21,j
(t) #12ht i j %s

2~2J1h!s2,

mi , j 1N5mi j , mi 1N, j5mi j ,

which were obtained in the previous section as Eqs.~13!,
~14!, and~15!.
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